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Figure 38. Load-deflection curves for FRC mixtures containing PP macrofibers: (a) P0-

125, (b) P0-25, (c) P0-50, (d) P1-125, (e) P1-1875, (f) P1-25, (g) P2-125, (h) P2-25 
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Figure 39. Load-deflection curves for FRC mixtures containing AR glass macrofibers: (a) 

G0-125, (b) G0-25, (c) G0-50, (d) G1-125, (e) G1-1875, (f) G1-25, (g) G2-125, (h) G2-25 
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Figure 40. Load-deflection curved for FRC mixtures containing PVA macrofibers: (a) V0-

125, (b) V0-25, (c) V0-50, (d) V1-125, (e) V1-1875, (f) V1-25, (g) V2-125, (h) V2-25 

Figure 37 shows that the control sample does not exhibit any residual strength after peak loading 

and shows only a few measurements before unloading. This pattern can be attributed to the 

interlock of the aggregates holding the sample together for a short period. Similar results are 

evident for many of the PP and PVA FRC mixtures, which show residual strength at macrofiber 

dosages of 0.25% and 0.1875%, respectively. This observation highlights the fact that the 

addition of small quantities of PP and PVA macrofibers does not trigger the most important 

characteristic of FRC, which is post-peak strength. However, AR glass FRC mixtures show 

residual strength regardless of the macrofiber content. 

The toughness of each mixture can be measured by calculating the area under the load-deflection 

curve. The toughness values of the FRC specimens that showed some level of residual strength 

are presented in Table 14.  

Table 14. Toughness of FRC specimens  

Specimen 

Toughness  

(in./lb) Specimen 

Toughness  

(in./lb) Specimen 

Toughness  

(in./lb) 

OPC - - - - - 

P0-125 - G0-125 49.67 V0-125 - 

P0-25 - G0-25 51.88 V0-25 123.07 

P0-50 - G0-50 131.48 V0-50 86.12 

P1-125 - G1-125 117.3 V1-125 - 

P1-1875 - G1-1875 106.82 V1-1875 124.43 

P1-25 102.47 G1-25 84.05 V1-25 100.51 

P2-125 - G2-125 113.86 V2-125 - 

P2-25 58.87 G2-25 100.07 V2-25 112.61 

 

The results presented in this table suggest that AR glass FRC reaches a higher toughness when 

microfibers are incorporated into the matrix. Microfibers do not provide similar benefits to PVA 
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FRC because the strong fiber-matrix bond of the PVA fibers means that the PP microfibers fail 

faster than the PVA macrofibers, which limits the microfibers’ contribution to toughness. In 

general, PVA FRC shows higher toughness compared to AR glass FRC. This can be attributed to 

the higher deflection occurring at the failure point of PVA FRC compared to that occurring at the 

failure point of AR glass FRC. This deflection is controlled by the governing mode of failure, 

which is rupture of the fibers in PVA FRC and pull-out of the fibers in AR glass FRC. In the 

latter, pull-out is restricted by the twisted shape of the monofilaments. Furthermore, AR glass 

macrofibers have a significantly higher modulus of elasticity compared to PVA and PP 

macrofibers, which further limits crack widths. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

In this study, a comprehensive investigation was conducted on the properties of FRC for use in 

bridge decks. Three stages of research were designed to achieve this goal. The first stage was 

dedicated to finding the best performing binder composition to withstand plastic shrinkage. In 

the second stage, FRC with microfibers was investigated for its crack resistance, mechanical 

properties, and chloride resistivity. The third stage focused on the mechanical properties of 

hybrid FRC and involved an investigation of various dosages of PP microfibers and three types 

of macrofibers, i.e., PP, AR glass, and PVA.  

Key Findings 

The results of the investigations carried out for this research are summarized in the findings 

presented below. 

Stage 1 

• In general, increasing the proportion of Type K expansive cement resulted in an increase in 

the rate of capillary pressure development for all types and percentages of SCMs investigated 

in this project. Silica fume was found to have a negative effect on the rate of capillary 

pressure development, while Class F fly ash decreased the rate of capillary pressure. 

Therefore, Class F fly ash was incorporated into the mix design of the FRC in subsequent 

stages of this research. 

• For each type of concrete investigated, an increase in Type K expansive cement led to a 

reduction in plastic shrinkage crack widths at six hours after casting. For concrete containing 

Class F fly ash or silica fume, increasing the dosage of Type K cement resulted in a reduction 

in the rate of plastic shrinkage crack propagation, provided that adequate workability was 

achieved through the use of superplasticizer. 

• The DIC results suggest that after the six-hour testing period, the specimens experienced 

reduced plastic shrinkage-induced tensile strain at the location of cracking with increasing 

proportions of Type K expansive cement up to 22.5%. Doses of Type K cement up to 22.5% 

showed a substantial relative reduction in plastic shrinkage-induced tensile strain. 

Stage 2 

• For PP microfiber percentages from 0.25% up to 1.0% by volume, an increase in fiber 

proportion did not significantly affect the rate of drying-induced strain development or the 

final magnitude of strain in a concrete ring.  

• Tensile strength increased with both age and PP microfiber percentage among all ages and 

mixes of FRC for fiber doses up to 1.0% by volume. The largest relative increase in tensile 
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strength occurred at lower PP microfiber doses in the range of 0.25%. The ability of PP 

microfibers to improve the tensile strength of concrete decreased in efficiency at fiber 

volumes of 1.0% or higher. 

• Cracking potential, defined as the ratio of the maximum shrinkage-induced stress 

experienced by an FRC mix to the tensile strength of the same FRC mix, decreased with an 

increase in PP microfiber percentage for fiber doses up to 1.0%. At volumes of 1.0% and 

higher, the relative reduction in cracking potential significantly decreased compared to the 

relative reduction in cracking potential at lower doses. 

• In general, the data show that the 28-day compressive strength of FRC increases with PP 

microfiber proportion for fiber doses up to 1.0% by volume. At PP microfiber volumes of 

1.0% and higher, the relative increase in compressive strength provided by the fibers 

significantly decreased compared to the relative increase in compressive strength at lower 

doses. 

• An increase in PP microfiber proportion up to 1.0% by volume corresponded to a decrease in 

the rate and magnitude of chloride ion penetration into FRC after 24 hours. Increasing the 

fiber dosage to 1.0% appeared to result in less efficient mitigation of chloride penetration 

compared to the mitigation provided at lower fiber proportions. 

Stage 3 

• PVA macrofibers reduced the workability of FRC more significantly than AR glass and PP 

macrofibers due to the water absorption of the PVA fibers. 

• PP and PVA macrofibers reduced the compressive strength of concrete, while AR glass 

macrofibers provided a compressive strength similar to that of the control sample. In the case 

of hybrid FRC, the addition of AR glass macrofibers resulted in superior compressive 

strength, which was augmented by increasing the macrofiber dosage. 

• FRC with PP macrofibers showed weaker performance under tensile loads compared to FRC 

with AR glass or PVA macrofibers. 

• The mechanical test results suggest that AR glass macrofibers show a promising synergy 

with PP microfibers, which makes AR glass macrofibers an appropriate choice for hybrid 

FRC. 

• Regardless of the fiber combination and dosage, the FRC samples studied in Stage 3 

exhibited a flexural strength similar to or higher than that of the control sample. FRC with PP 

macrofibers showed superior performance in terms of flexural strength when no microfibers 

were added to the mixture. However, when microfibers were introduced into the mixture, 

FRC with PP macrofibers lost its superiority. Furthermore, in hybrid FRC with low 
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macrofiber dosages (i.e., 0.125% and 0.1875%), AR glass FRC had the highest flexural 

strength. However, at a macrofiber dosage of 0.25%, PVA FRC outperformed the FRCs with 

other macrofibers. 

• The addition of AR glass macrofibers to concrete, even at a dosage of 0.125%, provided FRC 

with some level of post-peak residual strength and toughness. However, PP and PVA 

macrofibers provided FRC with post-peak flexural strength and toughness at dosages of 

0.25% and 0.1875%, respectively. Moreover, at a macrofiber dosage of 0.5%, AR glass FRC, 

in contrast to PP or PVA FRC, showed a well-formed residual flexural strength stretching 

beyond 1/150 of the span length. 

Conclusions and Recommendations 

Based on the research conducted and the literature reviewed for this study, it can be concluded 

that replacing a portion of portland cement with Class F fly ash has a positive effect on the 

resistance of concrete to plastic shrinkage as well as on the workability and long-term durability 

of concrete. Although the addition of Type K cement showed promise in restricting crack width, 

it increased the rate of capillary pressure development in concrete, which has a destructive effect 

on the resistance of concrete to plastic shrinkage. Therefore, it is not recommended that Type K 

cement be included in final mix designs, while it is recommended that Class C fly ash replace 

20% of the portland cement to address dimensional stability, workability, and durability 

concerns.  

The addition of PP microfibers, even in doses as low as 0.25% by volume, proved to 

significantly reduce the cracking potential of concrete due to drying shrinkage. Furthermore, PP 

microfibers were found to be helpful in enhancing the mechanical and chloride resistance of 

FRC, but increasing the volume of PP microfibers beyond a certain percentage decreased the 

fibers’ efficiency. On the other hand, PP microfibers, similar to other microfibers, increase the 

water demand of concrete, which is a restrictive operational parameter. Therefore, practical 

considerations limit the dosage of PP microfibers; the maximum practical dosage is 

recommended to be 0.125%, which corresponds to 2 lb/yd3.  

Another drawback of microfibers is their inability to provide post-peak strength, which can be 

addressed with the addition of macrofibers. Based on the pre- and post-peak mechanical strength 

results, AR glass monofilaments are recommended to be used as macrofibers. These fibers 

showed superior performance over PP and PVA macrofibers. The recommended fiber 

combination is 0.125% PP microfiber along with 0.25% AR glass macrofiber, which can satisfy 

practical restrictions as well as provide suitable pre- and post-peak mechanical properties. 
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